Los números reales son los números que se puede escribir con anotación decimal, incluyendo aquellos que necesitan una expansión decimal infinita. El conjunto de los números reales contiene todos los números enteros, positivos y negativos; todos los fracciones; y todos los números irracionales -- aquellos cuyos desarrollos en decimales nunca se repiten.
Dada una recta, se selecciona un punto arbitrario de ésta para representar el cero (0) y otro punto a la derecha del cero para representar el uno (1). Luego dividimos toda la recta en segmentos que tengan la misma longitud que el segmento de cero a uno, para así representar los números enteros, los números 1, 2, 3, 4, ... (en este orden) a la derecha del cero y los números -1, -2, -3, ... (en este orden) a la izquierda del cero.Los restantes números reales se representan en esta recta, usando su expansión decimal tal como se muestra en el ejemplo que sigue.
Clasificacion:
Un número real puede ser un número racional o un número irracional. Los números racionales son aquellos que pueden expresarse como el cociente de dos números enteros, tal como 3/4, -21/3, 5, 0, 1/2, mientras que los irracionales son todos los demaś. Los números racionales también pueden describirse como aquellos cuya representación decimal es eventualmente periódica, mientras que los irracionales tienen una expansión decimal aperiódica:
1/4 = 0,250000... Es un número racional puesto que es periódico a partir del tercer número decimal
Propiedades:
Fuente:
- http://bc.inter.edu/facultad/smejias/algebra/conferencias/props.htm
No hay comentarios:
Publicar un comentario